Classifying Response Correctness across Different Task Sets: A Machine Learning Approach
نویسندگان
چکیده
Erroneous behavior usually elicits a distinct pattern in neural waveforms. In particular, inspection of the concurrent recorded electroencephalograms (EEG) typically reveals a negative potential at fronto-central electrodes shortly following a response error (Ne or ERN) as well as an error-awareness-related positivity (Pe). Seemingly, the brain signal contains information about the occurrence of an error. Assuming a general error evaluation system, the question arises whether this information can be utilized in order to classify behavioral performance within or even across different cognitive tasks. In the present study, a machine learning approach was employed to investigate the outlined issue. Ne as well as Pe were extracted from the single-trial EEG signals of participants conducting a flanker and a mental rotation task and subjected to a machine learning classification scheme (via a support vector machine, SVM). Overall, individual performance in the flanker task was classified more accurately, with accuracy rates of above 85%. Most importantly, it was even feasible to classify responses across both tasks. In particular, an SVM trained on the flanker task could identify erroneous behavior with almost 70% accuracy in the EEG data recorded during the rotation task, and vice versa. Summed up, we replicate that the response-related EEG signal can be used to identify erroneous behavior within a particular task. Going beyond this, it was possible to classify response types across functionally different tasks. Therefore, the outlined methodological approach appears promising with respect to future applications.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل#Unconfirmed: Classifying Rumor Stance in Crisis-Related Social Media Messages
It is well-established that within crisis-related communications, rumors are likely to emerge. False rumors, i.e. misinformation, can be detrimental to crisis communication and response; it is therefore important not only to be able to identify messages that propagate rumors, but also corrections or denials of rumor content. In this work, we explore the task of automatically classifying rumor s...
متن کاملLearning-based Rule-Extraction from Support Vector Machines
In recent years, support vector machines (SVMs) have shown good performance in a number of application areas, including text classification. However, the success of SVMs comes at a cost – an inability to explain the process by which a learning result was reached and why a decision is being made. Rule-extraction from SVMs is important for the acceptance of this machine learning technology, espec...
متن کاملBoosting Automatic Lexical Acquisition With Morphological Information
In this paper we investigate the impact of morphological features on the task of automatically extending a dictionary. We approach the problem as a pattern classification task and compare the performance of several models in classifying nouns that are unknown to a broad coverage dictionary. We used a boosting classifier to compare the performance of models that use different sets of features. W...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016